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Supplementary Material

In this supplement, we describe (1) a sensitivity analysis
to understand the robustness of our method w.r.t. imaging
parameters (Section B); (2) additional qualitative results on
simulated data and real world captures (Section D); and (3)
further discussion of our work (Section E). We also include
three short videos, which provide animated 360◦ views of
qualitative reconstruction results.

For sections, figures and equations, we use numbers
(e.g., Sec. 1) to refer to the main paper and capital letters
(e.g., Sec. A) to refer to this supplement.

A. Implementation Details

For both simulated and real world experiments, we use an
8-layer MLP with 256 hidden units as our SDF, fθ, and ini-
tialize it as a sphere, centered at the origin with radius 0.3m,
using geometric initialization [? ]. For each transient, we
sample 256 rays ω over Ω and sample 256 points per ray.
We set λEikonal to 0.1 across all experiments and set λTV

to 0 and 0.01 respectively for the simulated and real-world
experiments. We train fθ for 300K steps using Adam [? ]
with a mini-batch size 2, a learning rate 0.0005, and cosine
decay. The learned SDFs are converted to meshes using
Marching Cubes [? ].

B. Sensitivity Analysis

We perform extensive experiments to understand the robust-
ness of our method in comparison to baselines under vary-
ing sensor parameters in simulation. All experiments are
based on the Bunny scene and the parameters are varied
one at a time while other parameters remain fixed at the
base condition (as described in Section 4 of the main pa-
per). To ensure strong baselines for every sensor configura-
tion, we calibrate the thresholds tp and ts for the projection
(threshold) and space carving baselines respectively per re-
construction. We perform a brute force search over possi-
ble thresholds and report the best Chamfer achieved. As
this amounts to calibrating on the test set, the numbers re-
ported represent the best possible performance of the base-
line methods on the given data. The results of this sensitiv-
ity analysis are presented in Figure A. In what follows we
discuss some of the main findings.

Sensor Placement. We study two key parameters that con-
trol sensor placement: the number of views and the mini-
mum elevation angle at which the sensors are placed. Our
method consistently outperforms all baselines in Chamfer
distance by an order of magnitude across a broad range of
parameter choices. In particular, our method readily sup-

ports as few as 128 views above a considerably large ele-
vation angle of 30◦ without harming reconstruction quality.
This robust gain in performance confirms that our method
takes advantage of broad-band signal in transients not ex-
ploited by the baseline methods.

Temporal Resolution. Our system takes advantage of the
temporal information in transient histograms, and therefore
benefits when that information is present at a high resolu-
tion. Because of this, our method outperforms baselines by
a very wide margin at a small bin size, but the margin van-
ishes as bins become wider than 2cm (equivalently 66ps),
because decomposing the temporal signal becomes imprac-
tical beyond this limit. Fortunately, today’s commodity
SPADs operate at a smaller bin size (∼ 40ps). Baseline
methods show no performance gain at small bin sizes, as
they do not take advantage of the temporal resolution.

Angular Resolution. Our system resolves spatial reso-
lution from wide-FoV sensors by taking advantage of the
time dimension. In this regime, the optimal sensor field-
of-view size is not obvious: a smaller FoV means more
highly constrained geometry, as each histogram images a
smaller region, but too small of a field-of-view means a
lack of coverage and under-constrained geometry. We find
that an angular resolution in the 30◦ to 60◦ range is op-
timal for reconstructing 3D geometry with our method on
the bunny scene. Reprojection based methods benefit more
from a smaller field-of-view, while space carving performs
best with a wider field-of-view so that space is sufficiently
carved away. In every case, our method outperforms base-
lines by a wide margin.

Signal-to-noise ratio (SNR). We consider three parameters
that jointly impact SNR: illumination power, ambient flux,
and number of illumination cycles. Our method again out-
performs all baselines by a significant margin across all test
conditions. Notably, the baselines fail or perform consider-
ably worse under high ambient flux, as signal photons are
blocked by background photons due to pile-up. By contrast,
our method is robust against a broad range of ambient flux
levels, as we model the effects of ambient flux directly.

C. Point Cloud Surface Reconstruction
We do not apply surface reconstruction to the point clouds
computed by reprojection because off-the-shelf reconstruc-
tion techniques do not perform reliably on the generated
point clouds, as shown in Figure B. Additionally, calculat-
ing Chamfer distance to the computed point cloud ensures
that we are capturing the efficacy of reprojection rather than
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Figure A. Sensitivity analysis of our method compared to baselines across a range of imaging parameters. In almost every case,
our method outperforms baseline methods on Chamfer distance. Missing datapoint in (d) indicates that our method failed to converge.
Illumination power (e) is unit-less as it also absorbs factors like quantum efficiency and does not map directly to any real world parameter.

Reference Point Cloud Poisson Ball-Pivoting

Figure B. Off-the-shelf algorithms for surface reconstruction
(Poisson Surface Reconstruction [3] and The Ball-Pivoting Algo-
rithm [1] do not perform well on point clouds generated by repro-
jection.

a given surface reconstruction method. We include one-way
reconstruction to ground truth Chamfer distance in Table 2
to provide a metric which does not penalize the sparsity of
point clouds produced by reprojection.

D. Additional Qualitative Results

More reconstruction results. We present additional qual-
itative results on simulated data (Figure D) and real-world
captures (Figure C). These results were omitted from the
main paper due to lack of space.

Surface normal visualization. Moving beyond the 3D
shapes, we further examine the surface normal of our re-
constructed 3D objects. The surface normal of a point x on
the reconstructed mesh is estimated as

ñx =
∇x(fθ(PE(x)))

∥∇x(fθ(PE(x)))∥
, (A)

where fθ is the learned SDF and PE denotes the positional
encoding function. The error ex w.r.t. the ground-truth nor-

mal nx is given by

ex = |⟨nx, ñx⟩|. (B)

Surface normal results. We provide visualizations of sur-
face normals for simulated data in Figure E. Our method
can successfully recover smoothly varying normals. Error
typically occurs at edges and depth discontinuities with fast-
changing normals. We hypothesize that sensors with higher
temporal and spatial resolution are needed for more accu-
rate surface normal reconstruction.

E. Further Discussion

Beyond Lambertian objects. Our method assumes a spa-
tially uniform Lambertian BRDF, but in practice can effec-
tively reconstruct objects with spatially varying albedo and
slightly glossy appearance (e.g. the spray bottle). In theory,
our method can easily be adapted to incorporate a paramet-
ric lighting model. Recovery of the parameters of such a
model are likely possible because, by sharing information
among many observations, the BRDF is effectively sampled
at many incident and exitant angles. An intriguing direction
for future work is investigating which BRDF parameteri-
zations can be recovered with our imaging setup, and the
effect of the reflectance model on reconstruction quality.
We suspect that a non-parametric NeRF-like BRDF would
not be suitable as it does not sufficiently constrain the op-
timization. A parametric lighting model, e.g. Phong [2] or
Oren-Nayar [6] may appropriately constrain the optimiza-
tion while allowing the model to learn a more accurate scene
representation.
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Figure C. Additional qualitative results on real-world captures. Our method achieves the highest reconstruction quality. Poses in
column two are subsampled by a factor of two for clarity.

Runtime efficiency. Our method takes on the order of hours
to reconstruct a scene, making it unsuitable for real-time
applications in its current state. Future work should in-
vestigate ways to speed up forward rendering and model
training. Improved importance sampling would likely yield
modest improvements in convergence time. Another op-
tion is to render only summary statistics of the histogram
(e.g. mean, peak locations or widths) rather than the entire
histogram, which would likely be faster to render at the ex-
pense of yielding a lower-quality reconstruction.

Sensor pose. In this work, we used an industrial robot
arm to gather posed sensor measurements. We chose this
modality as it is guaranteed to provide highly accurate sen-
sor poses, and allows control over precise sensor place-
ment. For applications like wearable computing, camera
poses might be pre-calibrated. Alternatively, the low-cost
single-photon camera could be combined with a sensor-
based localization system (e.g., an IMU based [8] or a cam-
era based [5] system) to recover camera pose, a setup which
is standard in related works [4, 7]. Such a capture setup
would allow capture of more organic and large scale scenes,

which more closely mimic the potential use cases of the sen-
sor (e.g. on mobile robots and drones).

Comparison to other 3D imaging modalities. Our work
provide a low-cost 3D imaging system using single-photon
cameras. We provide detailed comparisons between our
method and baseline methods, but do not compare our re-
constructions to those gathered from other 3D modalities,
such as continuous wave time-of-flight [? ] or LiDAR [?
]. Future work should provide a comparison to these other
modalities to provide insights into the niche (in terms of ac-
curacy, size, power, etc.) filled by each.

Commodity sensors. One challenge for future work is a
lack of hardware support for measurement and use of tran-
sient histograms. Very few low-cost sensors allow access to
transient histograms, and those that do often perform pre-
processing that is proprietary or undocumented. We hope
that manufacturers will see value in users having access to
transient histogram data and support the use of this data
with documentation and low-level access in the future.

Ethical concerns. Our work presents a new method for
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Figure D. Additional qualitative results on simulated data. Our method achieves the highest reconstruction quality. Space carving
captures an envelope of the shape, and may carve away occupied areas in concave shapes (e.g. Armadillo). Reprojection gives a sparse
reconstruction of convex shapes, (e.g. skull, soap, sphere), the scale of which may be distorted due to biases introduced by the wide field-
of-view of the sensor.

imaging 3D objects with low-cost single-photon cameras.
We do not anticipate major ethical concerns.
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Figure E. Visualizations of surface normals for simulated data. Our method correctly estimates surface normals in flat regions. Error
mainly occurs at edges and depth discontinuities. We hypothesize that sensors with higher temporal and spatial resolution are needed to
detect rapid changes in surface normals.



Supplementary References
[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and

G. Taubin. The ball-pivoting algorithm for surface re-
construction. IEEE Transactions on Visualization and
Computer Graphics, 5(4):349–359, 1999.

[2] Phong Bui-Tuong. Illumination for computer generated
pictures. CACM, 1975.

[3] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. Poisson surface reconstruction. In Proceed-
ings of the fourth Eurographics symposium on Geome-
try processing, 2006.

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020.

[5] Raul Mur-Artal, Jose Maria Martinez Montiel, and
Juan D Tardos. Orb-slam: a versatile and accurate
monocular slam system. IEEE transactions on robotics,
2015.

[6] Michael Oren and Shree K Nayar. Generalization of
lambert’s reflectance model. In SIGGRAPH, 1994.

[7] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Su-
car, David Novotny, Michael Zollhoefer, and Mustafa
Mukadam. isdf: Real-time neural signed distance fields
for robot perception. In RSS, 2022.

[8] Jingang Yi, Junjie Zhang, Dezhen Song, and Suhada
Jayasuriya. Imu-based localization and slip estimation
for skid-steered mobile robots. In IROS, 2007.


	. Implementation Details
	. Sensitivity Analysis
	. Point Cloud Surface Reconstruction
	. Additional Qualitative Results
	. Further Discussion

