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Abstract—Stroke is a leading cause of long-term adult disabil-
ity. Many stroke patients participate in rehabilitation programs
prescribed by an occupational therapist to aid in recovery;
however, occupational therapists rely on in-clinic assessments
and often-unreliable self-assessments at home to track a patient’s
progress, limiting their ability to monitor how patients perform
outside of a clinical setting. Our Daily Activity Recognition and
Assessment System collects depth and skeletal data passively
from within the patient’s home to assess long-term recovery
and provide metrics to an occupational therapist to allow for
more individualized rehabilitation plans. Using data from a wall-
mounted depth sensor, we adapt a hierarchical co-occurrence
network to identify actions from pre-segmented skeletal data. We
then perform assessments on the classified actions to track key
recovery metrics: normalized jerk, speed of motions, and extent
of reach. We also introduce novel filters to identify high quality
data for analysis. Our sensor was installed in a stroke patient’s
kitchen for seven days, generating the first action recognition data
set from a stroke patient in a naturalistic environment. We use
this data in conjunction with the NTU-RGB-D data set to validate
our recognition and assessment algorithms. We achieved 90.1%
accuracy by replicating the results of the NTU-RGB-D data set
and a maximum of 59.6% accuracy on our kitchen data set.

Index Terms—Action Recognition, Hierarchical Co-
Occurrence Network, Stroke Rehabilitation, Skeletal Data,
Depth Data, Foresite DS5 Sensor

I. INTRODUCTION

Every year, around 795,000 people are affected by a stroke
in the United States, with 50% experiencing hemiparesis, or
a weakening of one side of the body [1, 2]. With the help
of an occupational therapist, stroke patients can avoid or
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mitigate these symptoms by adhering to a rehabilitation plan
[3]. Every patient experiences varying degrees of symptoms,
so prescribing a personalized rehabilitation plan is vital for
a quick and effective recovery; however, a personalized reha-
bilitation plan necessitates individualized metrics, which are
time- and resource-intensive to collect. Rehabilitation progress
is typically measured through periodic in-clinic evaluations,
but participation in rehabilitation is low, with only 30.7% of
stroke patients receiving outpatient rehabilitation, and in-clinic
assessments are often subjective, and do not capture patient
functionality outside of a clinic [1].

Recently, work has been done to provide independent reha-
bilitation for patients at home [3]. Mystic Isle, an interactive
video game utilizing the Microsoft Kinect depth sensor, en-
courages patients to simulate in-clinic rehabilitation exercises
at home and tracks quantitative motion data [3]. While Mystic
Isle offers a substantial improvement over previous in-home
rehabilitation techniques, it still requires a time commitment
from patients. Additionally, while the game does encourage
the patient to participate in exercises, it does not capture and
assess their movement when doing daily tasks, and it offers
limited insight into long-term recovery.

We propose a Daily Activity Recognition and Assessment
System (DARAS) using a DS5 depth sensor from Foresite
Healthcare to recognize and assess actions in a naturalistic, in-
home setting. The goal of the system is to provide metrics of
the stroke patients’ motions to occupational therapists to help
them create more personalized rehabilitation plans and have
a record of patient progress over the course of their recovery.
DARAS has three main components as seen in Fig. 1: data
logging, action recognition, and action assessment. The DS5
uses the Orbbec depth sensor, and our data logger utilizes the
Orbbec Astra SDK to capture frames of depth data and extract



Fig. 1. Proposed components of DARAS.

skeletal data for analysis while preserving the privacy of the
patient. The logger is configured to only capture data when a
figure is detected in the frame, saving the data to a local stor-
age device for later retrieval. To perform action recognition, we
adapt a hierarchical co-occurrence network (HCN) from [4];
the HCN takes pre-segmented skeletal data as input and returns
a recognized action. The assessment component is adapted
from Mystic Isle, which evaluates metrics such as speed of
motion, extent of reach, and normalized jerk [5]. Coupled with
action recognition, we are able to compare metrics of similar
actions over time to track and assess a patient’s long-term
recovery.

DARAS supports many features for stroke rehabilitation.
The sensor is robust enough for extended in-home deployment,
being able to accommodate multiple persons in the view and
automatically segment the skeletal data from the individual
bodies. Additionally, the system reboots and notifies the user
should any crash or power outage occur. Depth and skeletal
data are saved locally for assessment, enabling occupational
therapists to longitudinally compare metrics.

The paper is organized as follows. We survey related work
in Section II. We outline our implementation of the data
logging, action recognition, and action assessment in Sections
III, IV, and V, respectively. Our experiment and results are
presented in Section VI and we discuss our results and
conclusion in Section VII.

II. RELATED WORK

A. Action Recognition

Since the release of the Microsoft Kinect in 2010, depth sen-
sors have become an affordable and readily available method
of capturing depth and skeletal data for action recognition
[6]. Action recognition has typically been performed on video
inputs which contain only one action. Early action recognition
relied on extracting features from the visual input to guide
analysis, using techniques like histogram of oriented gradients
and histogram of oriented 4D normals, where vectors are
extracted from RGB or depth data to interpret the motions [7],
[8]. Similarly, depth motion maps are used to segment depth
data into three cartesian planes that guide the recognition of
actions [9]. With deep learning becoming increasingly preva-
lent, however, convolutional neural networks have become
a more successful method of action recognition, typically
outperforming other techniques [10]. Action recognition meth-
ods have been developed primarily for classifying actions,

typically training and operating on pre-segmented videos;
however, using pre-segmented videos limits action recognition
in practical situations. Outside of a laboratory environment,
individuals perform actions sequentially rather than in disjoint,
isolated segments, so an optimal action recognition algorithm
would be able to detect and segment actions from a continuous
video feed.

B. Action Assessment

Virtual reality rehabilitation systems which utilize the Mi-
crosoft Kinect have been around for some time. Proffitt
and Lange have documented the developmental research and
history surrounding these systems, finding that a virtual reality
environment is effective for stroke rehabilitation. The virtual
reality system encourages patients to perform their rehabili-
tation exercises and tracks their progress over time [11]. The
same researchers have also had success implementing their
own virtual reality game with the Microsoft Kinect called
Mystic Isle [3]. Recently, an action assessment library has
been developed for Mystic Isle, which we utilize [3].

In order for these rehabilitation assessment tools to be
effective, it is important that skeletal data are tracked accu-
rately. By comparing data from the Kinect v2 to a state-of-
the-art Vicon motion capture system, researchers have found
that the Kinect is comparable in accuracy when tracking
upper-body joints, but less accurate when tracking the lower
body, especially the hips [12]. It has also been found that
the extent-of-reach metrics determined by trained clinicians
are comparable in accuracy to those found by the Kinect
sensor [13]. However this accuracy has only been applied in
structured environments such as in clinics or virtual reality
games; no similar studies have been done to track the daily
activities of stroke patients and quantitatively assess their
movement in a natural environment, such as the home.

III. DATA LOGGING

A. Sensor Installation

The action logging component of our system is implemented
on-board the Foresite DS5 sensor. Our logging program runs
on a low-power linux computer inside the integrated DS5
system. The logger utilizes the Astra SDK to detect when a
person is in view, and it only saves recordings if a person
is detected. The sensor can record up to 30 frames-per-
second of depth images, but the on-board Linux computer
limits the speed of saving the data, reducing the recording
rate to seven frames-per-second. The depth images are saved
in compressed binary files which are extracted after data
collection, and skeletal data is periodically written to .csv
files. When recording exclusively skeletal data, the logger can
reach 30 frames-per-second consistently, and because the .csv
files are significantly smaller than depth images, the improved
frame rate does not cause storage concerns. An example of
depth and skeletal data can be seen in Fig. 2.

Body segmentation of the skeletal data is done in real
time by our data collection system. When multiple bodies are
detected in the frame, they are both written to the same .csv



Fig. 2. Data collected by the DS5 sensor.

file and labeled with a unique body identification number to
differentiate individuals between frames. Skeletal data can then
be easily parsed into body-specific files after data collection.
Segmentation of each frame into multiple bodies is crucial
for differentiating the patient from other individuals in the
home. Pre-segmented skeletal data allows us to run separate
assessments on each body. Because we have the ability to
capture depth and skeletal data concurrently, a depth-based
body re-identification algorithm such as in [14] could be
implemented on depth frames and be matched back to skeletal
frames in order to identify the individual being tracked. In our
case, we can manually select the body of the stroke patient
for assessment.

B. Data Set

To test the capabilities of our system in a naturalistic
environment, we gathered data in a stroke patient’s restaurant
kitchen. The kitchen was selected as a location where the
patient often performs manipulation and reaching tasks. The
kitchen proved to be a challenging environment for our system,
as it was visually busy, with many metal surfaces which are
challenging for depth sensors to detect, and it often contained
multiple bodies at a time. Bodies were also prone to self-
obfuscation, as they turned to the side to face workstations.
Our DS5 was ceiling mounted and pointed at a busy part of
the kitchen for seven days. In that time period we gathered
300,819 frames of data, equating to 12 hours and 51 minutes
of recording. Of these frames, 159,343 contain exactly one
person as detected by the sensor. We focus on these frames
for our analysis.

For each frame of skeletal data we record a timestamp
and for each body we record a body identification number
as well as the x, y, and z coordinates of 19 key body joints.
We also record the status of each joint as either ‘highly
confident’ or ‘not tracked’ as provided by the SDK. While
we capture both depth and skeletal data, only skeletal data are
used for assessment and recognition. The depth data are still
useful for manual labeling, and it will be necessary for future
applications, such as person recognition.

C. Data Preprocessing

To compensate for the challenging kitchen environment
that our data was gathered, we introduce two filters, standard
deviation of bone lengths and upper body, to eliminate data
which is too poor for model training or assessment.

Our novel bone length approach takes advantage of the
fact that in reality some joints are connected by bones and
remain an equal distance from each other, e.g. the elbow and
wrist joint. We use the fluctuation in distance between these
joints as a proxy for the accuracy of our joint data, with
high fluctuations indicating poor data. Because we are only
interested in upper body movements, we limit this analysis
to the following upper body joint connections: spine-right
shoulder, right shoulder-right elbow, right elbow-right wrist,
right wrist-right hand, spine-left shoulder,left shoulder-left
elbow, left elbow-left wrist, and left wrist-left hand. We test
recognition on the 50% of actions with the lowest standard
deviation, which corresponds to a standard deviation below
22.84. Additionally, we are able to localize stable sections of
data within one file by finding the mean standard deviation in a
neighborhood around each frame and giving priority to lower-
deviation data. This could prove helpful for action localization,
which is important for the longitudinal deployment of the
system in a home. An example of the process is shown in
Fig. 3.

The upper body filter limits our data to only the upper
body joints. This is done because the upper body is tracked
more consistently, and is more relevant to our actions than the
lower body. We restrict the input to the following 12 joints:
head, shoulder-spine, left shoulder, left elbow, left hand, right
shoulder, right elbow, right hand, mid-spine, left wrist, right
wrist, and neck.

IV. ACTION RECOGNITION

In order to provide in-home quantitative metrics to occupa-
tional therapists, data must be parsed into individual actions
so assessment can be on an action-by-action basis. Each
frame in our novel data set has been manually labeled for
training and validating our recognition model. The actions
were decided with help from an occupational therapist; they
allow assessment on both halves of the body and are heavily
impacted by stroke.The labels are: walking, reaching above the
shoulder, reaching forward between the shoulder and the waist,

Fig. 3. Graph representing standard deviations in bone length. The highlighted
regions represent standard deviations below a set threshold.



reaching below the waist, object manipulation, sweeping, and
background. Background is being used as a catch-all category
for any actions that do not fit into any other category.

We have adopted the Hierarchical Co-Occurrence Network
(HCN) as seen in [4] which performs action recognition on
skeletal data. The HCN was developed to perform recog-
nition on the NTU-RGB-D data set, a pre-segmented data
set containing 3D coordinates of 25 joints performing 60
unique actions. The novelty of the HCN network comes from
the way it extracts co-occurrence features from sequences
of skeletal data. Features are aggregated from joint-level to
the global level and fed to a convolutional neural network.
This enables HCN to outperform other methods of joint-based
action recognition [4].

We adapt the HCN to train on our novel data set, which
contains 19 joints and 7 unique actions. This required re-
formatting the kitchen dataset into the NTU-RGB-D data
format. Adapting the network required reducing the number
of input nodes from 25 to 19, and reducing the number of
classifications from 60 to 7. All other details of the model are
left the same as in [4], including a learning rate of 0.001 and
the use of the Adam optimizer from [15].

V. ACTION ASSESSMENT

The end goal of our assessment component is to provide
quantitative data to track patient progress over time, enabling
occupational therapists to create customized rehabilitation
plans. We accomplish this by providing metrics which are
routinely gathered in the clinic, such as extent of reach, and
metrics which are not typically gathered by clinicians, such as
normalized jerk. Additionally, our system gathers metrics from
within the home, which gives a more holistic view of recovery.
For example, our system could track how often a patient
reaches with their right hand compared to their left, which
could give insight into the symptoms of their hemiparesis.

We adapt the assessment component from Mystic Isle [3].
From any segment of joint data, we gather the following met-
rics for each hand: maximum speed, mean speed, normalized
jerkx,y,z , and extent of reachx,y,z . From these metrics we
are able to calculate the following secondary metrics: mean
/ maximum speed, normalized jerk, 3D extent of reach away
from shoulder, area of reach, and volume of reach. These
metrics can be split into two categories: those measuring
shakiness of movement (speed and jerk) and those measuring
extent of reach. These metrics have been developed with an
occupational therapist to capture recovery [3].

VI. EXPERIMENTS AND RESULTS

A. Action Recognition

To ensure the integrity of the HCN, we first replicate the
results on a cross-view evaluation protocol of the NTU-RGB-
D data set. The default training method uses a learning rate of
0.001. After 400 epochs, our results were on par with those
reported in [4], at 90.1% accuracy compared to their 91.1%.

We then run the HCN on our field-collected data, and we
perform a number of tests on filtered data in order to optimize

our recognition accuracy. We filter by three parameters: rele-
vant actions, quality of the skeletal data, and part of the body.
We do not perform any filtering on the NTU-RGB data set,
because the data are already of very high quality, and filtering
the data only reduces the amount of information the model has
to train on, without increasing the data quality significantly.
To assess the accuracy of our model, we train on a random
70% of the data and test on the remaining 30%; all accuracy
results are the results on the testing data set. A summary of
our results are shown in Table I and corresponding confusion
matrices in Fig. 4. The results achieved on our data set are
considerably lower than those achieved on the NTU-RGB-D
data set. We attribute this largely to the noisy data from the
kitchen environment. The rest of this section will go into depth
cross-comparing tests using different filters.

We ran tests limiting input to only the 12 upper body joints,
as shown in Table II. This was an attempt to reduce noise
coming from the lower body. In addition, most of the actions
we aim to recognize feature primarily upper body motions.
In general, we find that using only upper body joints does
improve recognition accuracy. In the test that filters both by
bone length and removes background and sweeping actions,
the reverse is seen. We attribute this to a significant reduction
in the quantity of training data, which is explored primarily
with Table III.

We also perform action recognition on data filtered to only
the 50% of actions with the lowest standard deviation of bone
length, as explained in section III. In general, using the less
variable half of our data improved our recognition accuracy by
approximately 10% on both the entire body and the upper body
data, suggesting that it is a reliable filtering method. However,
when we use the bone length filter in addition to filtering out
the background and sweeping actions, the bone length filter
negatively impacts recognition accuracy. We attribute this to
filtering out too much data, resulting in a data set too small to
train on. The bone length filter halves the size of our data set,
so removing any additional actions in conjunction with this
filter leaves us with a data set that is a fraction of what we
normally have. In the instance of filtering out both background
and sweeping actions from the bone length filters, we’re left
with roughly a third of our original data.

Finally, we compare data sets with all actions against data
sets without both background and sweeping actions, as seen in
Table IV. We remove background data because it functions as a
catch-all for actions which did not fit into any other category
or were too obscured to be fully recognized. We find that
only applying the action filter on our data noticeably improves
recognition accuracy. However, when the action filter is used
with the bone length filter, recognition accuracy decreases.
Once again, we attribute this to the significantly reduced
quantity of training data.

With each of our trials, we find that these filters improve
our recognition accuracy until we have too little data to
successfully train the HCN. These data-filtering techniques are
useful methods for improving action recognition accuracy. We
see reduction in recognition accuracy when combining filters;



Fig. 4. Confusion matrix results for the following experiments: no filter, best 50% of bone length filter on upper body, no background and no sweeping filter.

however, on larger data sets, this could be done without too
greatly reducing the quantity of training data available. The
ideal DARAS, when fully clinically-ready, will accommodate
background actions interspersed with clinically-relevant ac-
tions. Therefore, we place greater importance on the bone
length and upper body filters.

TABLE I
SUMMARY OF ACTION RECOGNITION RESULTS

NTU-RGB-D Default
Best Without

Removing Actions Best Overall

Part of Body N/A Entire body Upper body Entire body

Actions N/A All actions All actions Without background
and sweeping

Filter N/A None Best 50% of
bone length None

Accuracy 90.1% 40.0% 55.6% 59.6%

TABLE II
UPPER BODY FILTER RESULTS

Test Whole Body Upper Body Only

No Filter
All Actions 40.0% 44.9%

No Filter
No Background / Sweeping 59.6% 50.0%

Best 50% Bone Length
All Actions 49.4% 55.6%

Best 50% Bone Length
No Background / No Sweeping 46.2% 44.1%

TABLE III
BONE LENGTH FILTER RESULTS

Test No Filter Bone Length

Whole Body
All Actions 40.0% 49.4%

Upper Body
All Actions 54.9% 55.6%

Whole Body
No Background / Sweeping 59.6% 46.2%

Upper Body
No Background / No Sweeping 50.0% 44.1%

B. Action Assessment

We apply our assessment component to the skeletal data
from our data set. In an ideal system, recognition results
would be fed directly into assessment, however, we manually
select segments for assessment to ensure that the segments
are accurate and demonstrate our system’s capabilities. Our
assessment results demonstrate that meaningful metrics can
be extracted from skeletal data, even in a naturalistic setting.
Comparing metrics such as these over time could prove
beneficial to occupational therapists. In our case, our patient’s
right side was affected by stroke, which can be seen in the
assessment results displayed in Table V.

VII. DISCUSSION

There are a number of limitations that impact the success of
our system. The foremost limitation is data quality. It is clear
from our action recognition results, specifically comparing
the NTU-RGB-D data set to our field data, that there is a
reduction in quality when moving from a laboratory to a real-
world environment, which significantly impacts recognition
and assessment performance. The lower frame rate of our data
set when compared to the NTU-RGB-D data set might also
have an impact on recognition accuracy. Additionally, despite
the week-long installation of our system, the size of our data
set limits the use of filters, impacting recognition results when
multiple filters are applied due to lack of remaining data. These
limitations and proposed future solutions are discussed below.

TABLE IV
ACTION FILTER RESULTS

Test All Actions No BG / Sweeping

Whole Body
No Filter 40.0% 59.6%

Upper Body
No Filter 44.9% 50.0%

Whole Body
Top 50% Bone Length 49.4% 46.2%

Upper Body
Top 50% Bone Length 55.6% 44.1%



We learned many things about the installation process that
may help to improve data quality in the future. First, an
optimal installation angle and installation environment are
important for capturing accurate skeletal data. Specifically,
our kitchen environment was primarily metal, which the depth
camera had trouble detecting, and the counters of the kitchen
being perpendicular to the camera meant that figures in the
view were often self-obfuscating. To avoid these issues, a cam-
era should be installed so that a front-on view of the subject is
more likely. Installation in a light-colored environment away
from metal, sunlight, and heat sources is also optimal as these
can hinder the clarity of the depth image. Encouraging subjects
to avoid wearing black can also ensure that the depth sensor
captures depth detail in their silhouette. Future data collection
should seek to address these issues.

The process of saving depth images on-board the Foresite
DS5 sensor is computationally taxing, limiting the frame rate
to 7 fps rather than 30. Fewer frames limits the smoothness
and intricacy of movement captured, making recognition more
difficult. This issue can be addressed with faster hardware, or
by saving exclusively skeletal data. With the HCN algorithm,
skeletal-only action recognition is very feasible, making saving
skeletal data a reasonable future adjustment.

While action recognition results on our data set are less
accurate than lab data, we have shown that filters may be
effective strategies for dealing with sub-optimal skeletal data.
Our novel bone length metric seems to have a positive impact
on action recognition performance, as does limiting input to
upper body joints. While these filters are helpful, if applied too
aggressively or in combination with each other they reduce the
amount of training data available. We believe future studies
with larger data and more aggressive filters may be able to
achieve better results.

We believe the metrics gathered by our assessment system
will be sufficient for an occupational therapist to use in
creating a personalized rehabilitation plan. There is, however,
information gathered by our system that is not entirely re-
flected in those metrics. One such metric is symmetry of hand
usage. In future work, an action recognition algorithm will be
trained to recognize which hand is being used for reaching, and
return a count of how often each hand is used. We believe this
will be a very telling metric for patients with hemiparesis. Our
stroke patient reached almost exclusively with her left hand,

limiting our ability to test such a system.
We are confident that further research will enable a fully

automatic in-home monitoring system. With more research
into data collection and action recognition, a complete in-home
system is possible. Such a system will enable occupational
therapists to give more personalized rehabilitation plans, and
ultimately improve the lives of stroke patients.
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TABLE V
ACTION ASSESSMENT OF LEFT AND RIGHT HAND MOVEMENTS

Action Labela Extent 3D (mm)b Extent Volume (cm3)c Max Velocity (mm/s) Mean Velocity (mm/s) Mean / Max Velocity Normalized Jerk
L R L R L R L R L R L R

Left Hand Up 662.14 671.99 2962 1766 1041.42 498.08 315.26 105.31 0.30 0.21 352.18 108.48

Right Hand Forward 527.73 573.98 5104 2121 725.00 653.69 459.26 55.29 0.63 0.269 29.29 59.28

Manipulation 608.15 632.85 144 1154 205.45 333.88 55.29 172.15 0.27 0.52 371.64 761.88
aWhile the action labels specify the hand performing the action, we analyze motion for both the left and right hands in the the L and R columns respectively.
bExtent 3D indicates the furthest distance the hand is from the midpoint of the two shoulders.
cExtent Volume indicates the 3D volume a cube surrounding their extent of reach would have.


