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Efficient Detection of Objects Near a Robot Manipulator

via Miniature Time-of-Flight Sensors

Carter Sifferman', Mohit Gupta', and Michael Gleicher!

Abstract—We provide a method for detecting and localizing
objects near a robot arm using arm-mounted miniature time-of-
flight sensors. A key challenge when using arm-mounted sensors
is differentiating between the robot itself and external objects
in sensor measurements. To address this challenge, we propose
a computationally lightweight method which utilizes the raw
time-of-flight information captured by many off-the-shelf, low-
resolution time-of-flight sensor. We build an empirical model of
expected sensor measurements in the presence of the robot alone,
and use this model at runtime to detect objects in proximity
to the robot. In addition to avoiding robot self-detections in
common sensor configurations, the proposed method enables
extra flexibility in sensor placement, unlocking configurations
which achieve more efficient coverage of a radius around the
robot arm. Our method can detect small objects near the arm
and localize the position of objects along the length of a robot
link to reasonable precision. We evaluate the performance of the
method with respect to object type, location, and ambient light
level, and identify limiting factors on performance inherent in
the measurement principle. The proposed method has potential
applications in collision avoidance and in facilitating safe human-
robot interaction.

Project Page: https://cpsiff.github.io/efficient_detection/

I. INTRODUCTION

ETECTION of objects near a robot arm is useful for

tasks such as collision avoidance [1], [2] or to en-
able proximity-based human-robot interactions [3]. Externally
mounted cameras are one way of detecting such objects, but
they suffer from occlusion and require the robot to remain
in view of the cameras, limiting their practicality when used
with mobile manipulators. Therefore, we seek a solution which
uses sensors mounted on the robot. Miniature time-of-flight
(ToF) sensors [4], [5], [6], [7] are particularly attractive for
for mounting on-robot because of their small size and low
power consumption. In order to cover the space around the
robot with a small number of sensors, we need the ability
to choose efficient sensor configurations, such as placing the
sensor peering down the length of an arm segment, as shown
in Fig. 1F. However, miniature ToF sensors have very low pixel
counts (e.g., 3x3) with a wide field-of-view (FoV) per-pixel
(5° - 40°), meaning that in such configurations, the robot is
constantly detected, and other objects can only be detected
if they are closer than the robot is to the ToF sensor. As
illustrated in Fig. 2, simple filtering of pixels which view the
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Fig. 1: Time-of-flight sensors attached to robot arms are prone to self-detection
(A), and typical configurations provide inefficient coverage of the radius
near the robot surface (B). Our method enables self-detection free proximity
sensing, which enables new sensor configurations that provide more efficient
coverage of a radius around the robot surface (C-F).

robot is ineffective in this case; therefore, to enable such sensor
configurations, any approach to object detection must be able
to differentiate between self-detections (the robot itself) and
external object detections within each pixel.

In this work, we provide a method for detecting and
localizing objects near a robot arm using miniature ToF
sensors. Our method allows for flexibility in sensor placement
and avoids self-detections of the robot. We address the key
challenge of differentiating robot self-detections from other
objects by implicitly modeling the expected appearance, re-
flectance, and geometry of the robot through sampling of raw
ToF measurements. We utilize the raw ToF data captured by
commonly used off-the-shelf sensors; at runtime our method
finds differences between the measured ToF data and the
expected appearance of the robot. Therefore, our method can
detect objects even in sensor pixels for which the robot is
prominent in view. This enables configurations such as that
shown in Fig. 1F, which provide coverage of a small radius
around the robot surface using few sensors. Our method also
prevents self-detection in more typical outward facing sensor
configurations as shown in Fig. 1C.
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Our contributions are: 1) a method for detection and lo-
calization of objects near a robot arm with a known joint
state using a miniature ToF sensor while ignoring robot self-
detections; 2) experiments demonstrating that our method is
effective at detecting and estimating distance to objects with
the configuration shown in Fig. 1F, and experiments investi-
gating the limits and inherent constraints on the performance
of our method; and 3) a live demonstration.

Scope and Limitations. While our method can scale to multi-
ple sensors, in this work we build a prototype which includes
one sensor at a time. Our demonstration shows live output of
our method, but is not integrated with robot control for e.g.,
collision avoidance, and the sensor frame rate is limited to 3.5
Hz by the data interface of currently available sensors. Our
method enables sensor configurations which efficiently cover
a small radius around the robot surface, and is computationally
efficient at runtime, but requires one-time overnight reference
data capture per sensor position. Additionally, our method
foregoes the need for any geometric calibration of sensor
position, which is required by most alternative methods.

II. RELATED WORK
A. Whole-Robot Proximity Detection

Research on robotic “sensitive skin” comprised of touch
or proximity sensors dates back to the 1980s [8], [9]. While
tactile sensors [10], [11], [12] are useful for collision detection
and human-robot interaction, the ability to sense objects before
touch occurs (proximity detection) enables a different set
of applications including collision avoidance and safety in
human-robot interaction. Systems have been proposed for
whole-robot proximity detection, including those based on
optical ToF [13], [14], [15], [16], or other sensing princi-
ples [17], [18]. These works do not address the problem of
self-detection directly. Therefore, they are limited to outward
facing sensor configurations. Our work demonstrates using
flexibility in sensor placement to enable novel configurations
that cover regions efficiently.

B. Avoiding Self-Detection

Self-detection, when the robot itself is detected as an
external object, is a challenging problem for robot manip-
ulator perception systems due to the manipulator’s dynamic
shape during operation. There exists work on avoiding the
self-detection problem when using an external depth camera
which provides a 3D point cloud, by filtering out points
belonging to the robot. Some approaches rely on extrinsic
calibration between the camera and the robot, and use a 3D
model of the robot to simulate its expected signal in the
point cloud [19], [20]. Other works do not rely on extrinsic
calibration, recognizing and removing the robot from the
point cloud directly [21], or using temporal cues along with
proprioception [22], [23]. These approaches are a reasonable
solution for high resolution point clouds; when the robot points
are removed, there is still sufficient information remaining
to avoid collisions. However, with a low resolution sensor,
filtering point clouds is not effective because the robot may be
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Fig. 2: When sensor measurements are treated as single distances per-pixel,
objects further than the detected distance to the robot cannot be detected. This
leads to significant blind spots, precluding sensor configurations such as the
one shown. Our work enables such sensor configurations.

visible in all or nearly-all pixels. Therefore objects can only
be detected when they are closer than the detected distance
to the robot in a given pixel, severely limiting the effective
detection area for some sensor configurations. A visualization
of this limitation is shown in Fig. 2.

There is little prior work on avoiding self-detection with
arm-mounted proximity sensors. The works which address the
problem directly follow an approach similar to that used for
point clouds. Avanzini et al. [24] place distance sensors on the
links of a robot arm. To avoid self-detections, they use a 3D
model of the robot to simulate the expected distance reading if
only the robot were present. If the distance reading is less than
the simulated reading, an object is detected. Himmelsbach et
al. [25] use a similar approach. Such an approach means the
sensor will not see objects within its FoV which are further
than the simulated distance estimate, again being prone to the
problem shown in Fig. 2.

C. Miniature Time-of-Flight Sensors

Miniature ToF sensors are widely used in robotics due to
their small size and low power requirements. Applications
have been developed for the sensors mounted on miniature
drones [26], [27], [28], [29], [30]. Other works place a sparse
set of sensors around a robot [3], [16] or at a robot wrist [31],
and build applications for collision avoidance. There exist
methods which use the sensors to detect the 3DoF pose of
a planar surface [5], and methods for calibrating the extrinsic
position of a sensor attached to a robot arm [32]. This work
builds on previous work which provides a method for detecting
geometric deviations on a planar surface [33]. In contrast to
this previous work, the method presented in this paper works
for articulated robots and non-planar surfaces, and is able to
determine the distance to unknown objects.

There is a body of research which aims to make use of
the raw ToF data from low-cost sensors akin to the one
used in this work. Callenberg et al. [4] demonstrate in-
contact material classification and, utilizing additional hard-
ware, high-resolution imaging and non-line-of-sight tracking.
Other works look to recover more detailed 3D information
from the low-resolution measurements of these sensors. There
exist approaches for recovering 3D human pose [34], high
resolution depth images [35], and general 3D reconstruction
(from a distributed set of sensors) [36]. Miniature ToF sensors
have also been used to refine monocular depth estimates [37],
[38] and augment RGB SLAM [39]. Aforementioned work in
robotics also takes advantage of raw ToF data [5], [33].
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Fig. 3: AMS TMF8820 sensor used in this work, and an example histogram
captured by the sensor mounted on a robot arm. The large, leftmost peak is
due to the surface of the robot link. The presence of the finger causes the
appearance of an additional peak.

III. PROBLEM OVERVIEW
A. Background: Direct Time-of-Flight

The miniature direct ToF sensors that we utilize oper-
ate by illuminating a patch of the scene with a pulse of
(typically infrared) light and directly measuring the time of
travel of the returning light at high (nano- to picosecond)
time resolution. The returning light waveform is called the
scene transience, and the quantized version of that waveform
recorded by the sensor is the transient histogram [37], [40].
The transient histogram is a function of scene geometry and
reflectance properties (in addition to sensor and light-source
characteristics) integrated over the FoV of the sensor which,
for miniature sensors, is typically between 10 and 40 degrees
per pixel. Single photon avalanche diodes (SPADs) [41], [42]
are the most mature and widely available technology enabling
direct ToF, and the basis of currently available miniature
direct ToF sensors. These sensors are very small (<20 mm?),
lightweight (<1 gram), and power efficient (<10 milliwatts
per measurement) [6], [7], [43].

Typically, miniature ToF sensors use an onboard algorithm
to calculate a distance estimate from the transient histogram,
which is reported. The goal of this work is to recover the
distance to the closest point on unknown geometry while
ignoring the robot itself. To accomplish this, our method
utilizes the transient histogram directly, rather than on-sensor
distance estimates. An example of a transient histogram is
shown in Fig. 3. Using the transient histogram directly allows
us to pick out subtle variations in the measured ToF signal
in an individual pixel which are not contained in on-sensor
distance estimates alone. In §V-E, we demonstrate that on-
sensor distance estimates are not sufficient.

B. Problem Analysis

In order to estimate the distance to unknown objects in a
transient histogram while ignoring the robot itself, we first
must identify and remove the signal caused by the robot. In
the case of an articulated robot, the geometry of the robot
varies with respect to the robot joint state. Our goal is then
to create a mapping from robot joint state to a probabilistic
model of the expected transient histogram, as it would appear
if only the robot were present. This mapping could be achieved

in multiple ways. Previous work [36], [5] demonstrated an ef-
fective forward model for miniature direct ToF sensors, which
allows simulation of a histogram measurement given scene
geometry and reflectance (i.e., surface albedo and specularity).
However, in order to accurately simulate sensor measurements
of the robot, the spatially varying reflectance properties of the
robot would need to be known. Gathering such a measurement
requires highly specialized equipment, making a simulation-
based approach impractical. Further, previous work has estab-
lished that detecting objects based on known geometry but
unknown reflectance is fundamentally ambiguous under many
settings [33], [37].

Rather than modeling the ToF signal of the robot explicitly,
we utilize a data-driven approach in which measurements from
the sensor are sampled at many robot states with only the robot
present. Those measurements are used to create a probabilistic
model of the expected transient histogram for any single joint
state within the sampled range. Our method is applicable to
any direct ToF sensor which reports a transient histogram.
We evaluate our method using the AMS TMF8820, shown
in Fig. 3.

IV. METHOD

Given a b-bin transient histogram h,s € N® captured by a
miniature ToF sensor attached to an n degree-of-freedom robot
with joint state g € R™, we aim to recover the distance d to
the point nearest the sensor on any object in the sensor FoV
excluding the robot itself (and any attached accessories, e.g.,
a gripper). In practice, depending on the mounting position of
the sensor, the sensor may not be able to see every link of
the robot. In this case only degrees-of-freedom which affect
sensor readings are included in q.

A. Histogram Pre-Processing

Transient histograms are affected by ambient light, which
manifests as a DC offset in the captured signal [44]. To
avoid falsely detecting changes in ambient light as objects,
we pre-process histograms by subtracting the DC offset and
normalizing the area under the signal, following the approach
of previous work [33]. For the histogram h the DC offset
hofiset induced by ambient light is approximated by finding
the maximum kernel density on the values of h, which acts
as a robust way of estimating the modal value of h. The
kernel bandwidth o is a tune-able parameter, which can vary
by sensor model:

hofiser = argmax Z N (x; hi,0) (1)
*  hi€h

The area under the signal is normalized after Mofrser 18

subtracted. The pre-processed histogram h is given by:

h — hoffsel

b D Do
||h* hoffset”l

)

B. Modeling Known Objects

To detect the distance to unknown objects in the FoV
imaged by hy,, we rely on a probabilistic model of the per-bin
mean [l € Rﬁ_ and per-bin variance o € Ri of the expected
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histogram if only known objects were in the sensor FoV, given
the current joint state q. For reasons explained in §III-B, we
approximate [iq and oq by interpolating between real samples
over a range of possible q rather than an analytical approach.

Our method requires a set of per-bin histogram means
M, variances V and corresponding joint angles J which
sample the robot configuration space. In practice, this dataset
can be captured by, e.g., grid search or random sampling in
configuration space. For each joint position sampled, multiple
histograms are captured to generate a good approximation
of 'V to capture sensor noise. Details of how we perform
this sampling for real-world experiments are given in §V.
To approximate jiq and g from samples in M and V, we
perform barycentric interpolation, which requires finding a
convex hull of n 4 1 points around q in J. ugq and oq
are then interpolated between the corresponding values in M
and V. The importance of interpolation and the density of
samples needed to achieve good approximation of jiq and oq
is investigated in §V-B.

C. Detecting Distance to Unknown Objects

Given jiq and o4, we calculate the normalized probability
vector p € ]RZ_ for hys, which encodes the per-bin likelihood
that a given bin is in the distribution expected when the robot
alone is present, normalized so that for a given bin index i,
when hops,; = f4q,i the likelihood is 1:

—(hobs,i — Hq,i)?

pi=e  2(0qi) 3)

To detect objects and estimate their distance, we transform
p to a binary vector g which encodes bins that are likely to
contain an unknown object. The threshold for detection ¢ is a
hyper-parameter which can be tuned to adjust sensitivity:

- 4
Ji {O otherwise @

We then search for segments of the value 1 in g which span
c or more contiguous bins, each of which corresponds to one
detected object. For each segment, we extract the values of
h over the corresponding range. We find the peak in these
extracted values of h. The position (bin index) of this peak
corresponds to the distance to the detected object. We convert
from bin index i¢pek to distance using the conversion from
bin index to distance for the TMF8820 sensor established
by previous work [5]: distance (m) = 0.01387ipeqc — 0.1825.
We empirically observe that this calibration is stable between
multiple instances of the same sensor model.

D. TMF8820 Calibration

We observe that a varying bias is applied to TMF8820
histogram measurements between sensor power cycles. This
bias can lead to false positives if the sensor is cycled off
after the reference measurements (M, V and J) are captured.
While we do not know the exact cause of this effect, or if
it applies to other ToF sensors, we are able to mitigate it by
performing a one-off calibration step every time the sensor

is powered on after reference capture. We move the robot to
the first reference joint position J; and capture a set of 50
measurements, which we average per-bin and store as hy.
We then calculate h.g;, = M; — hyer. heap 1s stored and at
query time is added to h prior to Eqn. 1.

V. EXPERIMENTAL RESULTS
A. Implementation Details

We perform a series of experiments in which a TMF8820
sensor is attached to link two of a Universal Robots URS
robot arm. The sensor is positioned facing the end effector, as
shown in Fig. 3. In this position, sensor readings are invariant
to movement in the three most proximal joints. Thus, we
only sample the 3DoF of the three most distal joints (i.e.,
those comprising the wrist) to capture reference histograms.
Each experiment aside from §V-I relies on the same reference
dataset, which is captured over a 3D grid in joint space,
in which q4 € [-7,—7/12], q5 € [-57/6,57/12], q¢ €
[—7/2,5m/12]. Joint positions are sampled in 7/12 radian
increments, for a total of 2,304 joint positions. It takes ~ 10
hours to programmatically capture 50 measurements per joint
position. The brushed aluminum surface of the URS5 robot is
highly specular. While our data-driven approach models the
effect of the specular surface when the robot alone is present,
when other objects are present outside of the sensor field-
of-view the surface acts like a mirror. This leads to false
detections when objects outside of the sensor FoV are detected
via three-bounce paths. We cover the metallic surfaces of the
robot in masking tape to minimize this effect, and further
investigate in §V-G

We capture data from an AMS TMF8820 sensor connected
to an Arduino microcontroller, using the microcontroller code
provided by prior works [5], [36], [33] to extract both dis-
tance and histogram measurements. The TMF8820 reports 9
histograms over 9 non-overlapping zones, for a total FoV of
30° diagonally. For simplicity and to limit the FoV to avoid
unwanted detections, we utilize only one zone of the sensor,
yielding a 10° diagonal FoV. Sensor frame rate is limited by
the speed at which the I2C interface, which is not designed for
histogram data capture, can transmit histograms, so we modify
the microcontroller code to only report bins 1-80 to increase
frame rate. This means the maximum range of the sensor as
configured is ~ 90cm. The sensor reports measurements at
3.5 FPS. The execution of our algorithm takes 0.35 ms (2803
FPS) on a mid-range laptop CPU (Intel i5 1340P), and the
runtime scales linearly with the number of sensors used. In
our testing, interference between multiple TMF8820 sensors
is minimal, making them well-suited to future systems with
many Sensors.

Unless otherwise stated, we set the probability threshold
t = 0.001, and minimum segment size ¢ = 4. These values
were manually tuned to create a reasonably low false positive
rate for the main experiments. We investigate the effect of
changing these parameters in §V-H. A peak in bin ~14
from the TMF8820 corresponds to an object at distance zero;
therefore we trim the histogram h to bin range (15,80)
before applying Eqn. 3. We set ¢ in Eqn. 1 to 5, following
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Fig. 4: Effect of joint-space sampling density on self-detection (false positive)
rate. Linear interpolation of background histograms between nearby joint
states outperforms nearest neighbor interpolation (lower is better). 3 DoF of
robot wrist joints are sampled.
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Fig. 5: Objects used in experiments, shown as placed on the robot for data

capture. Pieces of foamboard have a hatching pattern applied to provide visual
features for ground-truth depth-from-stereo camera.

previous work [33]. In each experiment, we only consider the
closest detection. All captures are in a windowless room with
fluorescent lights (~ 500 lux).

B. Self-Detection Rate

We perform an experiment to understand the effect of joint-
space sampling density on the rate at which the robot is falsely
detected. The results of this experiment are highly dependent
on robot geometry and sensor position. The experiment serves
to provide a rough approximation of performance in general,
and provides context for other experiments, which use the
same robot and the same sensor position.

We capture a dataset of ToF measurements from 1000
uniformly sampled random joint positions within the joint
range of the reference dataset, with only the robot present.
The self-detection rate (false positive rate) is the rate at which
detections occur in this dataset. To investigate the effect that
sampling density has on self-detection rate, we sub-sample the
reference dataset by a factor of 2, 3, and 4 per dimension, cre-
ating a coarser grid of samples on which the model is built, and
plot the effect on self-detection rate in Fig. 4. Self-detection
rate increases as the density of joint-space samples decreases,
and linear interpolation leads to a lower self-detection rate than
nearest neighbor interpolation. Self-detection rate levels off at
high sampling densities; we hypothesize that this is because
in rare cases measurement noise leads to self-detections, and
measurement noise is constant regardless of sample density. A
coarser sampling of every 30° achieves similar performance
to 15° while requiring an order of magnitude fewer samples.
Coupled with future sensors with a higher frame rate, this
means that reference data capture could be made orders of
magnitudes faster for little performance penalty.
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Fig. 6: True positive rate as a factor of the distance from the sensor to the
object, broken down by object type. Note that due to random object placement,
each data point may not represent the same number of samples.

C. True Positive Rate

To evaluate the true positive rate of our method (i.e., the rate
at which an object is detected when one is present), we capture
a dataset of ToF measurements in which objects are touching
or nearly touching the robot arm. Between each measurement,
the robot is moved to a random uniformly sampled joint state
within the bounds of the reference dataset, and moved the
object to a random distance from the sensor along the robot
arm (1-28cm from the sensor); random distances are used to
make data capture faster, ultimately allowing a larger dataset.
We utilize five objects: a human pointer finger, a human hand,
and long pieces of white foamboard cut to lcm, 2cm, and
4cm in width. The objects are shown in Fig. 5. The finger and
hand were captured touching the robot arm, while each piece
of foamboard was captured at Ocm, lcm, and 2cm proximity
from the arm itself. In total, the dataset contains 275 captures,
each with varying conditions (object, distance to sensor, and
proximity to arm).

We achieve a true positive rate of 78.9%; this is broken
down by object and distance to the sensor in Fig. 6. The
4cm wide foamboard and pointer finger are the easiest to
detect at all distances, while the narrower foamboard and
hand are the most difficult. The hand, 1cm, and 2cm-wide
foamboard are rarely recognized beyond 19cm from the sensor.
We hypothesize that the difference between objects is due to a
difference in their cross-sectional area and geometric deviation
from the robot. While the hand is a large object, its cross
sectional area is small from the point-of-view of the sensor
when the hand is resting flat on the robot, and the hand does
not extend far above the robot surface, leading to a relatively
small change in the histogram. Object albedo might also play
a factor; an object which is much brighter or darker than the
robot will cause a larger change in the measured histogram
than one with the same albedo. Lastly, non-line-of-sight effects
(see §V-G) caused by the rest presence of the wrist and rest
of the arm above the finger may make it easier to detect than
the narrow foamboard. Future work should aim to isolate and
negate the cause of the performance gap between objects.

D. Distance Estimation

We use the same dataset as in the previous subsec-
tion (§V-C) to evaluate the accuracy of our distance estimate.
Ground truth distance labels are captured via an Intel Re-
alsense D405 depth-from-stereo camera positioned next to the
ToF sensor. The closest point on each object is labeled, and the
depth estimate extracted from the D405 depth image. Objects
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Fig. 7: A. Actual distance vs. distance predicted by our method. We achieve an
average distance error of 2.08cm. B. Actual distance vs. distance predicted by
a baseline method which utilizes on-sensor distance estimates. The baseline
method never estimates a distance further than Scm due to the limitation
illustrated in Fig. 2.

closer than the minimum depth range of the camera are labeled
by overlaying an image of the robot arm with ruler marks onto
the captured RGB image of the object.

Fig. 7A compares the distance estimate from our method to
the actual distance. We achieve an average absolute error of
2.08cm. Our method under-estimates the distance to objects
in some cases. One case is when a nearby object fills a
large portion of the FoV, completely changing the shape of
the histogram. When this happens, it is difficult to align the
observed histogram to the reference to localize the deviation.
Our method also sometimes under-estimates the distance to
far away objects. We hypothesize that this could be due to a
low signal-to-noise ratio, and/or the presence of the dynamic
robot wrist links at those distances.

E. On-Sensor Distance Estimation

We compare the distance estimation results achieved by
on-sensor distance estimates to our method. The TMF8820
reports up to two distance estimates per-zone, corresponding
to up to two objects in the FoV. For each sample we choose
the distance estimate of the two which achieves the lowest
absolute error from the ground truth to demonstrate the best
case for on-sensor distance estimates. In Fig. 7B, we show
the distance estimated by this method compared to the true
distance. The distance estimates never exceed Scm, roughly
the distance to the nearest point on the robot. This experiment
demonstrates the limitation illustrated in Fig. 2 and makes
it clear that the results achieved by our method cannot be
achieved using on-sensor distance estimates alone.

FE. Sensor Field-of-View

We characterize the FoV of the sensor by placing the 4cm
and 2cm foamboard at varying distance from the sensor and
proximity to the arm and plot the TPR per object position
in Fig. 8. The sensor is 4cm from the robot surface, with the
top edge of the FoV aligned with the surface. Accordingly, we
see that detection is less likely at 4cm from the surface and
much less likely at 6cm+. The maximum detection proximity
is consistent across all distances from the sensor, making the
sensor configuration effective for detecting objects that come
within 4cm of the robot surface.

True Positive Rate

Outside FoV

Inside FoV

Proximity to arm (cm)
o N £ (=)} (o=}

Distance from sensor (cm)

Fig. 8: Detection rate as a factor of object distance from the sensor and
proximity to the arm. We see that objects beyond 4cm proximity to the arm
are rarely detected, and that the proximity of detection is consistent regardless
of distance from the sensor. This well-defined field-of-view is desirable for
downstream applications.
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Fig. 9: There is an ambiguity between distant line-of-sight (LOS) objects
and nearer non-line-of-sight (NLOS) objects outside of the sensor field-of-
illumination. This limits the performance of our method on distant objects. If
the detection threshold is lowered to determine distance LOS objects, nearer
NLOS objects will also be detected.

G. Non-Line-of-Sight Objects

Direct ToF sensors are subject to non-line-of-sight (NLOS)
effects, which occur when photons bounce multiple times
before returning to the sensor, as illustrated by the blue path in
Fig. 9. As previously noted, this effect is very noticeable with
the brushed aluminum robot surface. We cover the arm with
masking tape to lower this effect for our experiments, but it is
still present. In this subsection, we investigate the prevalence
of NLOS effects in our setting.

We investigate NLOS effects over the previously captured
dataset (§V-F). We treat objects outside of the direct Fol of
the sensor (i.e., , 6cm and 8cm proximity to the arm; the
top two rows in Fig. 8) as NLOS objects. We compare false
positive rate between this set of objects and the case where
only the robot is present. As shown in Fig. 10, false positives
are much more likely when an NLOS object is present. The
NLOS effect limits the performance of our system when the
detection threshold is limited to not detect NLOS objects;
increasing the sensitivity to detect more distant objects comes
at the expense of increased detection of NLOS objects. On the
other hand, for some applications, detection of NLOS objects
may be welcome. In such cases the sensitivity can be increased
to detect more distant line-of-sight objects with little increase
in false positives in the absence of any objects.

H. Parameter Tuning and Ablation Study

Tuning the parameters ¢ and c (see §IV-C) allows for a
tradeoff between false positive rate and true positive rate. We
use the dataset from §V-B to test false positive rate and that
from §V-C (containing objects Ocm, lcm, and 2cm from the
robot surface) to test true positive rate. The operating points
achieved by varying ¢ and c are shown in Fig. 11. Varying these
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Fig. 11: Changing method parameters (¢ or ¢ described in §IV-C) leads to
different operating points on the ROC curve.

parameters allows for tuning of the FPR/TPR trade-off for
different scenarios. However, as shown in Fig. 10, increasing
the sensitivity of the method also increases the detection rate
of non-line-of-sight objects.

We ablate components of our method and show the effect
on true positive rate and false positive rate in Tab. I. We find
that calibration (§1V-D), and bin trimming are necessary to
prevent a high false positive rate. Normalization (Eqn. 1) has
no significant effect on the results because the test dataset does
not exhibit strong changes in ambient light.

1. Performance Under Varying Ambient Light

Ambient light affects the histogram, potentially leading to
a false positive if ambient light level changes after reference
capture. To evaluate our method under such changes, we
capture new reference captures at the same joint locations as
previous experiments. For each of four ambient light levels,
100 measurements of the robot are captured at random joint
positions with only the robot present. We calculate the false
positive rate of our method at each of these four light levels.
The results are shown in Tab. II. Moderate changes in ambient
light from the reference capture (which was taken under the
“Dim LED” lighting) do not lead to an increase in false pos-
itive rate. The bright, IR-heavy halogen light source leads to
a sharp increase in false positive rate. This means our method
is impractical when ambient light changes significantly (e.g.,
moving from indoors to sunlight). Additionally, we observe
that the pre-processing steps described in §1V-A are somewhat

Condition TPR (1) FPR (})
Base 0.789 0.002
No Preprocessing 0.785 0.002
No Calibration 0.996 0.917
No Bin Trimming 0.938 0.706

TABLE I: Ablation study. Calibration and bin trimming are necessary to avoid
high false positives. Preprocessing has no effect as the test dataset does not
contain changes in ambient light.

FPR (})
Lighting Lux Base Method No Pre-Processing
Dark <0.1 0.0099 0.0198
Dim LEDs* 100 0.0198 0.0198
Flourescent Lights 500 0.0099 0.1089
Halogen Lights 1000 0.1782 1.0000

TABLE II: Evaluation of the false positive rate of our method under varying
levels of ambient light. Poor performance is observed under bright halogen
lights, and performance is worse with no pre-processing (Eqn. 2). * Dim LED
lights match the lighting used during reference capture.

effective at improving performance under high ambient light.
It is possible that more sophisticated methods for reversing the
effect of ambient light [44] could improve the performance of
our method in these scenarios, but they require an accurate
model of sensor hardware which is not available with current
commercially available sensors.

VI. DEMONSTRATION

We demonstrate our method on a URS5 robot arm. As
objects approach the arm, they are detected and their position
shown overlaid on an image of the robot as a yellow region
corresponding to the range of the detected segments, and a red
line for the detected distance, shown in Fig. 1E and Fig. IF.
In addition to the configuration used for experiments (§V), we
demonstrate an additional configuration in which the sensor is
positioned orthogonal to the robot surface. The only change
made to accommodate this configuration is that joints 2
and 3 of the robot are sampled for reference measurements
rather than joints 4, 5, and 6. A live demonstration of both
sensor configurations is provided in the supplementary video.
This demonstration shows that our method is effective under
multiple sensor configurations with minimal adjustments.

VII. CONCLUSION AND FUTURE WORK

This work demonstrates that it is possible to use raw ToF
measurements to extract information about objects near a robot
arm that would be impossible to obtain from distance estimates
alone. We see poor performance on small objects when they
are placed beyond ~ 15cm from the sensor, limited partially
by non-line-of-sight effects. Future work should investigate
fusing sensor measurements to resolve the ambiguity between
line-of-sight and non-line-of-sight objects. Our method could
also be made more practical. We sample joint space uniformly
to capture reference data, which is inefficient; future work
should explore adaptive sampling or vary sampling density
based on robot geometry. Creating a robot system which
utilizes our method will require improved sensing hardware
design (i.e., PCBs and integrated wiring) to decrease foot-
print and increase frame rate, in addition to integration with
kinematics and control algorithms, akin to [3], [16], [45],
to enable human-robot interaction and collision avoidance.
A full system could additionally leverage temporal filtering
to improve detection stability and performance. Further work
should also further investigate performance as a factor of the
sensor placement and the geometry and reflectance properties
of detected objects. We believe the method presented in this
work is a step towards whole-body proximity sensing with
minimal hardware sensing cost.
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